题目:已知函数f(x)=3x,f(a+2)=18,g(x)=λ·3ax-4x的定义域为[0,1]. (1)求a的值; (2)若函数g(x)在区间[0,1]上是单调递减函数,求实数λ的取值范围.
2020-03-05
正确答案:
解:法一:(1)由已知得3a+2=18⇒3a=2⇒a=log32.
(2)此时g(x)=λ·2x-4x,
设0≤x1<x2≤1,
因为g(x)在区间[0,1]上是单调减函数,
所以g(x1)-g(x2)=(2x1-2x2)(λ-2x2-2x1)>0恒成立,即λ<2x2+2x1恒成立.
由于2x2+2x1>20+20=2,
所以实数λ的取值范围是λ≤2.
法二:(1)同法一.
(2)此时g(x)=λ·2x-4x,
因为g(x)在区间[0,1]上是单调减函数,
所以有g′(x)=λln2·2x-ln4·4x=ln2[-2·(2x)2+λ·2x]≤0成立.
设2x=u∈[1,2],上式成立等价于-2u2+λu≤0恒成立.
因为u∈[1,2],只需λ≤2u恒成立,
所以实数λ的取值范围是λ≤2.
试题解析: